Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices

نویسندگان

چکیده

Let C be a complex field, H_{m_1m_2} linear space of tensor products Hermite matrices H_{m_1}⊗H_{m_2} over , and suppose m_{1}, m_2≥2 are positive integers. A map f :H_{m_1m_2} → H_n is called inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim this paper to characterize the maps preserving inverses matrices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Maps Preserving Numerical Radius of Tensor Products of Matrices

Let m,n ≥ 2 be positive integers. Denote by Mm the set of m×m complex matrices and by w(X) the numerical radius of a square matrix X. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map φ : Mmn →Mmn satisfies w(φ(A⊗B)) = w(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary matrix U ∈Mmn and a complex unit ξ such that φ(A⊗B) = ξU(φ1(...

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

Linear Maps Preserving Ky Fan Norms and Schatten Norms of Tensor Products of Matrices

For a positive integer n, let Mn be the set of n × n complex matrices. Suppose ‖ · ‖ is the Ky Fan k-norm with 1 ≤ k ≤ mn or the Schatten p-norm with 1 ≤ p ≤ ∞ (p 6= 2) on Mmn, where m,n ≥ 2 are positive integers. It is shown that a linear map φ : Mmn →Mmn satisfying ‖A⊗B‖ = ‖φ(A⊗B)‖ for all A ∈Mm and B ∈Mn if and only if there are unitary U, V ∈ Mmn such that φ has the form A ⊗ B 7→ U(φ1(A) ⊗ ...

متن کامل

Linear Maps Preserving the Higher Numerical Ranges of Tensor Products of Matrices

For a positive integer n, let Mn be the set of n×n complex matrices. Suppose m,n ≥ 2 are positive integers and k ∈ {1, . . . ,mn− 1}. Denote by Wk(X) the k-numerical range of a matrix X ∈Mmn. It is shown that a linear map φ : Mmn →Mmn satisfies Wk(φ(A⊗B)) = Wk(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary U ∈Mmn such that one of the following holds. (i) For all A ∈Mm, B ∈Mn, φ(...

متن کامل

linear maps preserving or strongly preserving majorization on matrices

for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics Research

سال: 2023

ISSN: ['1916-9795', '1916-9809']

DOI: https://doi.org/10.5539/jmr.v15n4p75