Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices
نویسندگان
چکیده
Let C be a complex field, H_{m_1m_2} linear space of tensor products Hermite matrices H_{m_1}⊗H_{m_2} over , and suppose m_{1}, m_2≥2 are positive integers. A map f :H_{m_1m_2} → H_n is called inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim this paper to characterize the maps preserving inverses matrices.
منابع مشابه
Linear Maps Preserving Numerical Radius of Tensor Products of Matrices
Let m,n ≥ 2 be positive integers. Denote by Mm the set of m×m complex matrices and by w(X) the numerical radius of a square matrix X. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map φ : Mmn →Mmn satisfies w(φ(A⊗B)) = w(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary matrix U ∈Mmn and a complex unit ξ such that φ(A⊗B) = ξU(φ1(...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملLinear Maps Preserving Ky Fan Norms and Schatten Norms of Tensor Products of Matrices
For a positive integer n, let Mn be the set of n × n complex matrices. Suppose ‖ · ‖ is the Ky Fan k-norm with 1 ≤ k ≤ mn or the Schatten p-norm with 1 ≤ p ≤ ∞ (p 6= 2) on Mmn, where m,n ≥ 2 are positive integers. It is shown that a linear map φ : Mmn →Mmn satisfying ‖A⊗B‖ = ‖φ(A⊗B)‖ for all A ∈Mm and B ∈Mn if and only if there are unitary U, V ∈ Mmn such that φ has the form A ⊗ B 7→ U(φ1(A) ⊗ ...
متن کاملLinear Maps Preserving the Higher Numerical Ranges of Tensor Products of Matrices
For a positive integer n, let Mn be the set of n×n complex matrices. Suppose m,n ≥ 2 are positive integers and k ∈ {1, . . . ,mn− 1}. Denote by Wk(X) the k-numerical range of a matrix X ∈Mmn. It is shown that a linear map φ : Mmn →Mmn satisfies Wk(φ(A⊗B)) = Wk(A⊗B) for all A ∈Mm and B ∈Mn if and only if there is a unitary U ∈Mmn such that one of the following holds. (i) For all A ∈Mm, B ∈Mn, φ(...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2023
ISSN: ['1916-9795', '1916-9809']
DOI: https://doi.org/10.5539/jmr.v15n4p75